Relative connections on principal bundles and relative equivariant structures

نویسندگان

چکیده

We investigate relative holomorphic connections on a principal bundle over family of compact complex manifolds. A sufficient condition is given for the existence connection analytic family. also introduce notion equivariant bundles and establish its relation with bundles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant bundles and adapted connections

Given a complex manifold M equipped with a holomorphic action of a connected complex Lie group G, and a holomorphic principal H–bundle EH over X equipped with a G–connection h, we investigate the connections on the principal H–bundle EH that are (strongly) adapted to h. Examples are provided by holomorphic principal H– bundles equipped with a flat partial connection over a foliated manifold.

متن کامل

Connections on Principal Fibre Bundles

Complete definitions and motivations are given for principal fibre bundles, connections on these, and associated vector bundles. The relationships between various concepts of differentiation in these settings are proved. Finally, we briefly give an outline of the theory of curvature in terms of connections.

متن کامل

Principal Bundles, Groupoids, and Connections

We clarify in which precise sense the theory of principal bundles and the theory of groupoids are equivalent; and how this equivalence of theories, in the differentiable case, reflects itself in the theory of connections. The method used is that of synthetic differential geometry. Introduction. In this note, we make explicit a sense in which the theory of principal fibre bundles is equivalent t...

متن کامل

Complex Structures on Principal Bundles

Holomorphic principal Gbundles over a complex manifold M can be studied using non-abelian cohomology groups H(M,G). On the other hand, if M = Σ is a closed Riemann surface, there is a correspondence between holomorphic principal G-bundles over Σ and coadjoint orbits in the dual of a central extension of the Lie algebra C∞(Σ, g). We review these results and provide the details of an integrabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and Its Applications

سال: 2023

ISSN: ['1872-6984', '0926-2245']

DOI: https://doi.org/10.1016/j.difgeo.2023.102041